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ABSTRACT

With the increasing availability of Earth observation datasets, developing methods for the identification of

modes of variability is becoming crucial in Earth system science. These modes, also referred as teleconnections,

are useful to understand the global climate system and to predict short-term climate and climate variability. For

example, the El Niño–SouthernOscillation (ENSO) phenomenon, a teleconnection with global climate impacts,

has been associated with major social, economic, and ecological consequences. In this study, a novel procedure

calledmultichannel empirical orthogonal teleconnection (MEOT) analysis is introduced as a simple extension of

the logic of empirical orthogonal teleconnections to uncover the temporal evolution of recurrent space–time

patterns. A globalmonthly sea surface temperature dataset (1982–2007 time series) is used to explore theMEOT

method and its differences and similarities with the multichannel singular spectrum analysis (MSSA). Both

methods are applied with a 13-month embedding dimension to extract spatiotemporal patterns that exhibit clear

basis vectors in quadrature. MSSA extracted four quadratures, and MEOT extracted three. Findings show that

MEOT quadratures are more easily related to climate events corresponding to ENSO, South Atlantic Ocean

dipole, and Atlantic meridional mode. MSSA identified one quadrature related to ENSO and one related to the

quasi-biennial oscillation. The two remaining MSSA quadratures are mixtures of different indices rather than

one climate event. Thus, results indicate that, since it does not suffer from a biorthogonality constraint, MEOT is

effective at extracting modes of variability in climate datasets, suggesting its potential use in climate research.

1. Introduction

In this study, we introduce a novel procedure to ex-

tract modes of variability of climate that correspond to

oscillatory patterns coevolving in space and time. We

call the new method ‘‘multichannel empirical orthogo-

nal teleconnection’’ (MEOT) and illustrate its applica-

tion to a sea surface temperature (SST) dataset as an

example. We also explore the differences and similari-

ties between the new MEOT method and the more

well-known multichannel singular spectrum analysis

(MSSA). Earth’s climate system is characterized by

spatiotemporal patterns of climate variability at various

temporal and spatial scales (IPCC 2007), and, within the

system’s components, the ocean plays a major role in

redistributing heat and in influencing climates around

the world (Carissimo et al. 1985; IPCC 2007; Wunsch

Supplemental information related to this paper is avail-

able at the Journals Online website: http://dx.doi.org/10.1175/

JAMC-D-16-0072.s1.

Corresponding author: Benoit Parmentier, benoit.parmentier@

maine.edu

JULY 2017 PARMENT I ER ET AL . 1897

DOI: 10.1175/JAMC-D-16-0072.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/29/22 05:29 PM UTC

http://dx.doi.org/10.1175/JAMC-D-16-0072.s1
http://dx.doi.org/10.1175/JAMC-D-16-0072.s1
mailto:benoit.parmentier@maine.edu
mailto:benoit.parmentier@maine.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


2005). The interannual variability of oceans is known to

be a major causal mechanism of climate variability be-

cause of its thermal capacity and its impact on the at-

mosphere (IPCC 2007; Wunsch 2005). Evidence from

the scientific literature indicates that slowly varying

boundary conditions such as SST modulate time-mean

area-averaged rainfall over the tropics (Dirmeyer and

Shukla 1993; Shukla 1984) and that patterns of vari-

ability in SST at interannual-and-longer time scales arise

from the interaction between the atmosphere and the

ocean (Deser et al. 2010). For instance, El Niño–
Southern Oscillation (ENSO) constitutes a well-known

phenomenon illustrative of an ocean–atmosphere cou-

pled oscillation that propagates in the Earth system and

influences the weather worldwide (IPCC 2007; Liu and

Alexander 2007). ENSO affects the livelihood of human

societies around the world by affecting animal pop-

ulation levels (e.g., fish), primary productivity (Potter

et al. 2003), and crop yields through influences on fire,

drought, rainfall, and streamflow regimes (Chiew and

McMahon 2002; Dai et al. 2004; IPCC 2007; Rosenzweig

and Hillel 2008; Trenberth et al. 2002). In a similar way,

there are other atmospheric and oceanic climate oscil-

lations that affect large areas, such as the Atlantic

multidecadal oscillation (AMO; Knight et al. 2005) and

the North Atlantic Oscillation (NAO), which are linked

to winter weather events in the North Atlantic Ocean

(Cook et al. 2002; IPCC 2007), or the Pacific decadal

oscillation (PDO), which has been shown to influence

fish production levels in the North Pacific Ocean

(Mantua et al. 1997). These climate oscillations are often

referred to as teleconnections in the sense that they

represent preferred recurrent spatiotemporal patterns

or modes (components) of variability of the climate

system (Chase et al. 2006; IPCC 2007; Nigam and Baxter

2014). The identification of such climate modes benefits

the scientific community and numerous national climate

agencies as they provide key information to improve the

understanding of Earth’s climate system, climate re-

constructions, and predictions in short-term climate

forecasting (Kim and Wu 1999; Rotstayn et al. 2010;

Smith and Reynolds 2005; van den Dool et al. 2000; van

denDool 2007; Zwiers 1993). The increasing availability

of large Earth-observation time series coupled with the

need to improve identification of these modes has re-

sulted in a large body of research devoted to the de-

velopment and refinement of new statistical techniques

to identify and decompose large spatiotemporal climate

datasets (Compagnucci et al. 2001; Jolliffe 2002; Kim

andWu 1999;Mann and Park 1999; Reynolds et al. 2007;

van den Dool 2007).

Frequently used methods include empirical orthogo-

nal function (EOF; also known as principal components

analysis), singular spectrum analysis (SSA), and their

variants such as extended EOF (EEOF) and MSSA

(Broomhead and Jones 1989; Broomhead and King

1986; Jolliffe 2002; Plaut and Vautard 1994; Trenberth

et al. 2000; van den Dool 2007; Vautard et al. 1999).

There is a close association among SSA, EOF, and their

respective variants (Elsner and Tsonis 2013; Ghil et al.

2002), with both the SSA and EOF techniques being

eigenvalue-based methods that decompose covariance

or correlation matrices derived from climate datasets

(Jolliffe 2002; Keppenne and Ghil 1992).

The primary difference between SSA and EOF is the

manner by which the covariance is calculated and set up

in a matrix format (Elsner and Tsonis 2013). In essence,

SSA can be understood as an EOF decomposition on a

lagged covariance structure derived by applying a spe-

cific lag window (known as the embedding dimension) to

the original dataset (Lee 2002; Vautard et al. 1992).

Thus, EOF and SSA analyses share similar goals, that is,

the extraction of linearly independent patterns from

large datasets (Schnur et al. 1993), with the distinction

that SSA focuses on the extraction of oscillations that

exhibit distinct phase changes over time and temporal

patterns shifted in time with a high cross correlation at a

specific lag (Jolliffe 2002; Keppenne and Ghil 1992).

These extracted patterns can then be interpreted in term

of the physical and dynamic understanding of the Earth

system. In a similar way, MSSA is an extension of SSA

that is intended to detect space–time oscillatory patterns

by taking both the spatial and temporal correlations into

account (Graham et al. 1987a,b; Lau and Chan 1986). As

such, MSSA is mathematically equivalent to the EEOF

(Compagnucci et al. 2001; Graham et al. 1987b; Latif

and Graham 1992; Preisendorfer and Mobley 1988;

Weare and Nasstrom 1982) since both techniques are

spectral decompositions of block covariance or corre-

lation matrices intended to extract space–time patterns.

MSSA can therefore be viewed as a form of EEOF

analysis that is conducted on an extended field corre-

sponding to a series of lagged variables (Jolliffe 2002;

Wilks 2011). To conduct an MSSA, geophysical fields

are effectively concatenated to form an extended data-

set from which modes of variability can be extracted.

Since the concatenated fields are lags of the same vari-

able, the technique is aimed at finding oscillatory modes

in both space and time (Jolliffe 2002). Although the

MSSA and EEOF techniques have both been widely

used in the climate literature, they suffer from a major

drawback in that they inherit the property of bio-

rthogonality, which constrains the extraction of modes

and often leads to mixed modes (van den Dool et al.

2000). Such mixed modes are difficult to interpret and

may not correspond to existing physical phenomena
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(van den Dool 2007). In consequence, researchers have

developed over the years alternative statistical methods

to relieve the biorthogonality constraint (Jolliffe 2002).

In the EOF literature, rotation (Groth and Ghil 2011;

Jolliffe et al. 2002; Mestas-Nuñez 2000; Richman 1986),

regionalization (Jolliffe 2002), and empirical orthogonal

teleconnection (EOT) analysis (van den Dool et al.

2000; Smoliak and Wallace 2015) are all presented as

effective measures to attain these goals. Among them,

EOT is considered to be the computationally simplest

way to achieve such goals because it is based onmultiple

linear regression, and EOT results are very closely re-

lated to rotated EOF modes (van den Dool 2007). Fur-

thermore, EOFs are designed to provide a concise

description of global variance, which may not always be

desirable, whereas EOT describes variance over one

dimension only, that is, either time or space, and often

displays more regionalization (van den Dool 2007).

Since EOT in its current form (van den Dool 2007) is

not intended as a method for uncovering oscillatory

patterns from spatiotemporal datasets, we introduce in

this study a variant of EOT that is aimed at the extrac-

tion of modes coevolving in space and time. The novel

method, MEOT, is introduced and applied to a global

SST dataset to extract oscillatory patterns that coevolve

in space and time. In bothMEOT andMSSA, oscillatory

events are characterized by pairs of modes with similar

spatial and temporal patterns but shifted in time and/or

space. These pairs of modes are called quadratures be-

cause they correspond to the same oscillatory phenom-

enon but out of phase, that is, shifted by a quadrant, or

908 (Jolliffe 2002). The central purpose of this paper is to
introduce MEOT and to compare it with MSSA so as to

assess its ability to extract patterns in quadratures that

exhibit phase changes in space and time.

2. Data

National Oceanic and Atmospheric Administration

(NOAA) Optimum Interpolation Sea Surface Tem-

perature, version 2 (OISSTv2), is used in the analysis.

This global SST time series spans 1982–2007 with time

samples at a monthly temporal frequency and a spatial

resolution of 18 in latitude and longitude. The dataset

corresponds to a stack of 312 images (geophysical fields)

with 180 rows and 360 columns, amounting to a total of

64 800 pixels per image. The SST dataset (http://www.

esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html)

was obtained from the NOAA/Climate Prediction

Center (CPC). It results from a fusion of remotely

sensed observations from the NOAA AVHRR sensor

and in situ measurements from gauges, buoys, and boats

(Reynolds et al. 2002).

In addition, the study utilizes 12 climate tele-

connections at a monthly temporal resolution (Table 1)

that were obtained from the NOAA/Earth System Re-

search Laboratory (http://www.esrl.noaa.gov/psd/data/

climateindices/list/). These correspond to some of the

major modes of variability documented in the climate

literature and are used in the interpretation of modes

extracted from the MEOT analyses.

3. Methods

a. MEOT

The MEOT is a technique that extends the EOT

analysis by working on lagged datasets. The origin of the

EOT method may be traced back to the systematic

search for teleconnections (van den Dool et al. 2000)

that was conducted in the past by correlating every base

point to all of the other points (Namias 1981) and by

identifying the most important base points using some

diagnostic criterion such as teleconnectivity (Wallace

and Gutzler 1981). The EOT method (van den Dool

et al. 2000) is a regression-based technique that

provides a refinement to the selection problem by

identifying in succession the base points that explain the

most variance at all points including the base point from

the datasets. The first base point, named EOT1, corre-

sponds to the base point that maximizes the variance-

weighted sum of the coefficient of determination R2.

Subsequent EOTs are found by applying the same cri-

terion but removing the effect of the previous EOTs by

using the regression residuals. By repeating this math-

ematical procedure, researchers define a set of base

points that are orthogonal in the temporal dimension

(van den Dool 2007). A spatial EOT pattern is obtained

TABLE 1. Twelve climate indices are utilized to interpret the

spatiotemporal modes extracted by MEOT and MSSA.

Indices Teleconnections: Name and references

PNA Pacific North American index (NOAA/CPC)

NAO North Atlantic Oscillation (NOAA/CPC; Jones et al.

1997)

TNA Tropical Northern Atlantic (Enfield et al. 1999)

TSA Tropical Southern Atlantic (Enfield et al. 1999)

Niño-3.4 Niño-3.4 index (NOAA/CPC)

PDO Pacific decadal oscillation (NOAA/CPC; Mantua

et al. 1997)

AO Arctic Oscillation (NOAA/CPC)

AAO Antarctic Oscillation (NOAA/CPC)

AMM Atlantic meridionalmode (Chiang andVimont 2004)

AMO Atlantic multidecadal oscillation (Enfield et al. 2001;

Knight et al. 2005)

QBO Quasi-biennial oscillation (NOAA/CPC)

SAOD South Atlantic Ocean dipole (Nnamchi et al. 2011)
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by projecting the EOT basis function on the temporal

dimension of grid locations, creating an EOT-loading

image for each mode. By design, an EOT basis func-

tion is orthogonal in a unique dimension and does not

suffer from the biorthogonality constraint, thus en-

hancing interpretability (van den Dool et al. 2000). In

the context of this research, we extended the EOT

method to study modes of variability from an extended

lagged field—hence its name ‘‘multichannel EOT.’’

We use the word multichannel to inform the reader

that the EOT is carried on a lagged dataset in a manner

similar to EOF being performed on a lagged dataset

for MSSA.

The method may be summarized in two main steps:

lagging and EOT. The first step, lagging, involves the

conversion of the univariate (SST) time series dataset

into a multivariate dataset by temporally lagging the

original SST data. The second step involves an EOT

analysis on this extended multivariate dataset.

b. MSSA

The MSSA method is an eigenvalue-based de-

composition technique that is conducted on the cor-

relation or covariance matrix of a lagged space–time

dataset. In MSSA, the use of lag variables results in

special forms of covariance or correlation matrices

that approximate block Toeplitz matrices when time

series are stationary in the lag window (Elsner and

Tsonis 2013; Jolliffe 2002). Toeplitz matrices display

basis functions that are in quadrature in a manner

similar to sine and cosine functions (Elsner and Tsonis

2013; Watkins and Meyer 2001). The MSSA basis

functions— that is, the MSSA modes—do not, how-

ever, correspond to analytical functions (sines and

cosines) but are extracted empirically from the lagged

dataset by the eigen-based decomposition (Jolliffe

2002). Similar to other eigenvalue-based techniques,

MSSA possesses the property of biorthogonality,

which means that mode scores and loadings are

orthogonal.

c. Data matrix, biorthogonality, and spectral
decomposition

The SST lagged dataset used in this research can be

conceptually thought of as a cube whose dimensions

correspond respectively to time, space, and phase in a

manner similar to the representation proposed by

Berry (1964) and Ghil et al. 2002. Analyses are carried

out using the S-mode orientation, where ns refers to the

number of grid points of the geophysical field (64 800

grid points of SST), nt refers to the number of monthly

lagged observations represented in maps (300 maps

as result of 312 months with 13 complete lags), and

L refers to the size of the lag window of the phase

dimension (13).

To conduct the spectral decomposition, the data cube

must be reduced to a two-dimensional block matrix X

from which the covariance or correlation R and Ra

matrices can be obtained (Fig. S1 in the online supple-

mentary material; this and subsequent supplemental

figures are denoted by the leading ‘‘S’’). We derive

matrix X by concatenating the lag fields together and

expanding the spatial dimension to n0 5 L 3 ns, that is,

13 3 64 800 variables standardized in time (note that

only land pixels are considered in the analysis and

therefore the effective number is lower). Thus, the re-

sulting lagged data matrix X has dimension n0 3 nt, with

rows containing grid points and columns corresponding

to lag times. In the climate literature, however, the most

widely used setup utilizes the transpose of X, that is, XT.

Under this matrix setup, the variables are the spatial

locations, or grid points (columns), and the temporal

dimension is the set of observations (rows). This type of

setup leads to S-mode MSSA and MEOT analyses

(Jolliffe 2002). From XT, two symmetric matrices can be

derived: a matrix R that represents the relationship be-

tween the n0 spatial grid locations over an embedded lag

dimension and a matrix Ra that represents the re-

lationship between nt lagged maps (Fig. S1). In MSSA,

both the R and Ra matrices are diagonalized, and their

eigenvalues are equal because the singular value de-

compositions (SVD) of data matrices X and XT are the

same; their identical eigenvectors are recoverable by

permuting and rescaling the left and right SVD eigen-

vectors (Jolliffe 2002; Watkins and Meyer 2001; Wilks

2011). Hence, MSSA is a biorthogonal decomposition

that decomposes both thematrixR andRa, in contrast to

MEOT, which diagonalizes either the matrix R or Ra

(van den Dool 2007). Because MEOT is based on re-

gression, the researcher must select the direction of the

dimension to be orthogonal. In the S-mode orientation,

the time dimension is chosen to be orthogonal, which

leads to the diagonalization of R.

d. Method workflow

The original SST dataset is composed of a monthly

time series of 312 images spanning a 26-yr time period.

MEOT and MSSA were carried out on the SST dataset

through a series of fourmain steps. The first step consists

of calculating temporal anomalies by removing the long-

term monthly mean from the corresponding calendar

months (Fig. 1) to concentrate the analysis on the in-

terannual variability, following the practice of the cli-

mate literature (van den Dool 2007).

The second step consists of lagging the dataset to

create a series of 13 fields corresponding to a lag window
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L (embedding dimension) that is equivalent to 13months

in a manner similar to Ghil et al. (2002). This lagging

procedure reduces the extent of the time series length to

25yr (the length of the time series is cut by 12months). In

consequence, after the second step, each spatial field (or

image) is composed of 18 grid points (or pixels) with time

series of 300 months (equivalent to 25yr).

The third step consists of standardizing each grid point

using the mean and standard deviation in time. In con-

sequence, the weight of each grid point is solely de-

pendent on its temporal standard deviation and its area

(cosine of the latitude). Under this setup, the total

space–time variance derived from the dataset can be

recovered from two covariance–correlation matrices R

and Ra (van den Dool 2007). In this research, we use the

R matrix, which corresponds to an S-mode analysis as

described in section 3c.

The fourth step consists in applying EOT and EOF

decompositions on the lagged dataset to extract the

MEOT and MSSA modes of variability (Fig. 1). For

MEOT, this is done using the EOT algorithm by

computing the correlation between each base point of

the lagged datasets (hence the nameMEOT). The base

point that explains the most variance is the first MEOT.

Its temporal profile is correlated back (or projected) to

obtain the spatial patterns of MEOT modes of vari-

ability. Because the dataset has been lagged as de-

scribed before, the length of the temporal profiles are

cut by 12 while the spatial patterns have been expanded

to represent the 13-map sequence. For MSSA, we

apply the EOF-based algorithm to the covariance–

correlation matrix from the lag dataset to extract

MSSA modes. We obtain maps corresponding to

loadings and temporal profiles corresponding to scores.

MSSA and MEOT modes are interpreted using the

NOAA teleconnections indices using cross-correlation

functions. In addition to temporal profiles (bases), the

two-dimensional spatial-loading maps also provide

FIG. 1. Methodological workflow for the MEOT analyses: 1) Data anomalies are standardized and lagged in a 13-month window;

2) a lagged correlation matrix is produced and decomposed using the EOT in S mode corresponding respectively to MEOT analyses

(see text for details).
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visual cues for the identification of teleconnection

patterns.

4. Results

One of the unique properties of MEOT and MSSA is

their ability to uncover moving events by extracting

modes that illustrate the development of phenomena in

different phases (Moron et al. 1998). Determining

moving modes may be done by searching for ‘‘quadra-

tures’’ that correspond to cross-correlation functions

exhibiting clear peaks. Modes in quadrature correspond

to a pair of temporal basis functions with similar tem-

poral patterns shifted in time and a pair of map se-

quences with similar spatial patterns shifted in time

(Jolliffe 2002; Wang 2001). The literature does not

provide a clear threshold value to identify mixing or

nonmixing in modes, but Kim andWu (1999) suggest no

mixing if the leading lag correlation is 0.9 and all others

are below 0.1. We consider this rule to be arbitrary,

however, and therefore we report the extrema (absolute

maximum/minimum) of all cross-correlation values

within the length of the embedding dimension between

lag 213 and lag 113 (Tables 2 and 3) . Following this

rule, modes are defined to be in quadrature if they have

an absolute-value cross-correlation extremum of at least

0.6 and/or have spatial and temporal patterns related to

known teleconnections. Using such rules, we found

three quadratures for the MEOT analysis and four

quadratures for MSSA.

a. MEOT1, MEOT3, and MEOT4: ENSO

The first and third MEOT modes exhibit spatial and

temporal patterns that are related to ENSO. The two

map sequences portray overlapping phases of a pro-

totypical ENSO event (Fig. 2), with MEOT1 related to

El Niño phase. El Niño events are characterized by the

displacement of warm waters from the western Pacific

Ocean to the eastern Pacific following a weakening or

reversal of the easterly trade winds over the equatorial

Pacific. MEOT1 shows the anomaly and timing associ-

ated with lag 7 in the lag window and is consistent with

an ENSO event (Fig. 2, top). MEOT3, however, is

temporally offset and shows the lead-up whereby colder

waters in the eastern Pacific are replaced by warmer

waters; this pattern would be associated with Kelvin

waves moving warm water eastward and taking about

3 months to cross the Pacific (Fig. 2, bottom). The two

sequences are 6 months in quadrature as apparent from

the maximum of the cross-correlation function (corre-

lation coefficient r5 0.2) between the MEOT temporal

profiles (Fig. 3). The lag cross correlation of MEOT

profiles peaks at 6, which suggests a lag of 6 months,

similar to the one observed in the map sequences.

Comparison of the temporal profiles with teleconnec-

tion indices confirms that pair MEOT1–MEOT3 relates

the most to the ENSO event (Table 4) as evidenced by

correlations with the Niño-3.4 index of 0.82 and 0.73 for

MEOT1 and MEOT3, respectively. Results indicate

that all other climate indices have correlations that are

below the 0.5 threshold (Table 4 and Fig. S5). Thus,

findings from the lag-correlation analyses and the spatial

patterns indicate that the pair MEOT1–MEOT3 relates

to the ENSO event at different lags in time and

provides a spatiotemporal representation of a pro-

totypical development of an El Niño event. We found

that MEOT4 also displays a spatial pattern related to

ENSO and has a correlation of 0.63 with the Niño-3.4
index (Table 4). The spatial sequence from MEOT4

follows by 6 months the spatial sequence of MEOT1.

From the cross correlation and spatial pattern (see

Fig. S6), we postulate that this component corresponds

to the end of the sequence of an ENSO event. In terms

of index,MEOT1 andMEOT3would bemore useful for

prediction and monitoring because they provide a

clearer representation of the ENSO phenomenon at

early and full stages.

b. MEOT7 and MEOT16: AMM

The pair MEOT7–MEOT16 exhibit spatial patterns

(Fig. 4) related to theAtlantic meridional mode (AMM)

characterized by contrasting warm and cold anomalies

in the Canary Current and the Sargasso Sea, re-

spectively. This mode is characterized by an anomalous

TABLE 2. Absolute extremum value for lag cross-correlation functions between MEOT modes (lag in parentheses).

MEOT1 MEOT3 MEOT4 MEOT7 MEOT8 MEOT9 MEOT10 MEOT15 MEOT16

MEOT1 1 (0) 0.72 (6) 0.67 (26) 20.06 (7) 0.35 (213) 20.13 (213) 0.17 (213) 0.08 (23) 20.13 (13)

MEOT3 0.72 (26) 1 (0) 0.71 (212) 0.12 (27) 20.24 (28) 0.11 (28) 20.13 (4) 0.09 (29) 20.14 (9)

MEOT4 0.67 (6) 0.71 (12) 1 (0) 0.15 (6) 20.34 (5) 20.3 (213) 20.15 (2) 20.13 (24) 20.16 (25)

MEOT7 20.06 (27) 0.12 (7) 0.15 (26) 1 (0) 20.25 (13) 20.22 (8) 0.14 (26) 0.18 (13) 0.77 (5)

MEOT10 0.17 (13) 20.13 (24) 20.15 (22) 0.14 (6) 0.17 (11) 20.19 (12) 1 (0) 0.91 (26) 0.18 (13)

MEOT15 0.08 (3) 0.09 (9) 20.13 (4) 0.18 (213) 0.13 (13) 20.09 (5) 0.91 (6) 1 (0) 0.17 (27)

MEOT16 20.13 (213) 20.14 (29) 20.16 (5) 0.77 (25) 0.17 (213) 20.11 (10) 0.18 (213) 0.17 (7) 1 (0)
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SST gradient over the intertropical convergence zone

(ITCZ; Chiang and Vimont 2004) with a warm pool of

water clearly visible on most of the map sequences

(Fig. 4). In the literature, this anomalous warm gradient

has been linked to winds and convection influencing sea

level pressure and producing a displacement of the

ITCZ toward the warmer hemisphere (Chiang and

Vimont 2004; Kossin and Vimont 2007). Chiang and

Vimont (2004) report that variations in the trade winds

in the subtropical NorthernHemisphere drive theAMM

pattern. The AMM buildup is apparent from lag 9 in

MEOT16 (Fig. 4, bottom) and continues in MEOT7

with warm pools of water strengthening until lag 7

(Fig. 4, top). The lag cross correlation between

MEOT16 and MEOT7 temporal profiles confirms that

the two modes are in quadrature, with a peak of corre-

lation of 0.77 occurring at lag 5, which suggests that

MEOT16 leads MEOT7 by 5 months (Fig. 5, bottom).

Temporal profiles for MEOT7 and MEOT16 display a

strong relationship with AMM, with correlations of 0.63

and 0.53, respectively (Table 4). Table 4 reveals, how-

ever, that both MEOT7 and MEOT16 also display a

strong correlation with the tropical North Atlantic

(TNA) climate index, with correlation values of 0.61 and

0.56, respectively (see the online supplementary mate-

rial for a visualization using bar plots in Fig. S7). This

may arise from the fact that both the AMM and the

TNA index, which has not been identified as a distinct

teleconnection, overlap in the same spatial domain

(Enfield et al. 1999).

c. MEOT10 and MEOT15: SAOD

The pair MEOT10–MEOT15 exhibits a spatial pat-

tern characteristic of the South Atlantic Ocean dipole

(SAOD), with warm anomalies in the Gulf of Guinea

and cold anomalies in the South Atlantic Gyre (Fig. 6).

The SAOD teleconnection influences weather patterns

in equatorial Africa and has been linked to precipitation

patterns inWest Africa (Nnamchi and Li 2011; Nnamchi

et al. 2011). Under SAODconditions, the disappearance

of trade winds leads to the appearance of westerly winds

and the buildup of a warm pool of water in the eastern

part of the tropical South Atlantic Ocean where other-

wise cold waters from the Benguela Current dominate.

Similarities with the El Niño event have led many au-

thors to link the SAOD to the Atlantic Niño telecon-

nection (Florenchie et al. 2003), but work fromNnamchi

et al. (2011) indicates that the SAOD is an independent

mode of variability. The pair of map sequences depicts a

prototypical SAOD event as evidenced by the gradual

transition from cold to warm waters in the eastern part

of the tropical South Atlantic and the building up of a

cold pool in the South Atlantic Gyre. As expected,
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spatial patterns are shifted and the timing of the tran-

sition differs, with the gradual warming peaking at lag 10

(in red) in MEOT10 and at lag 4 in MEOT15 (Fig. 6).

The cross-correlation lag analysis gives further cre-

dence to the interpretation of the quadrature as being

SAOD; the pair of temporal profiles displays strong

correlations with the SAOD index (Table 4), with values

0.62 and 0.61 for MEOT10 and MEOT15, respectively

(Fig. 7). We also found that the MEOT10–MEOT15

pair shows strong correlations with the tropical South

FIG. 2. Temporal map sequences for (top) MEOT1 and (bottom) MEOT3 illustrate the unfolding of a typical ENSO event in series of 13

successive phases. MEOT3 shows the buildup to El Niño, and MEOT1 shows strengthening of El Niño conditions.
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Atlantic (TSA) climate index, with values of 0.64 and

0.59, respectively (Table 4; see the online supplementary

material for a visual representation in Fig. S8). This is

not surprising since the TSA index is measured in a

similar spatial domain.We interpret this mode as SAOD

because the pattern uncovered by MEOT10 and

MEOT15 more clearly relates to the dipole from the

SAODphenomenon described in Nnamchi et al. (2011).

The quadrature is also confirmed by the lag cross-

correlation analysis, which displays a very high peak of

0.91 at lag 26, suggesting that MEOT10 precedes

MEOT15 by 6 months.

d. MSSA

We analyzed 20 MSSA modes and found four quad-

ratures: MSSA1–MSSA2–MSSA3–MSSA4, MSSA7–

MSSA8, MSSA13–MSSA14, and MSSA16–MSSA17.

We performed a cross-correlation analysis with a lag

window of 13 and provide the extremum values with the

corresponding lags for the identified quadratures (see

FIG. 3. (top) The temporal profiles for MEOT1 (solid) and MEOT3 (dashed) show the

similarities in their temporal patterns. (bottom) The lag cross-correlation function indicates

that the modes are in quadrature with a peak of cross correlation of 0.72 at lag 6. The dashed

lines in the bottom graph represent the 95% confidence interval.
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Fig. S3 for a table with the full 20 MSSA). Correlations

with teleconnection indices are found in Table 5 and

illustrate the multiple correlations for many MSSA,

suggesting some mixing of modes (see Fig. S9 for cross

correlations with 20 MSSA modes). Although there are

fourMSSA components with cross correlation above 0.5

for the first quadratures, we matched MSSA1 and

MSSA3 as the most plausible quadrature using the map

patterns (Fig. S10) and the cross correlation of 20.57

with Niño-3.4 (Table 5). Thus, we identified that quad-

ratures MSSA1–MSSA3 and MSSA13–MSSA14, which

display correlations above 0.5, are related to the ENSO

and quasi-biennial oscillation (QBO) teleconnection

indices, respectively. The most dominant source of

variability is an ENSO event that appears prominently

in MSSA1, MSSA2, MSSA3, and MSSA4 (the MSSA

spatial patterns visible in Figs. S10 and S13). MSSA6

displays a correlation value of 20.56 at lag 8 with TSA

(Fig. S9). MSSA7 and MSSA8 are in quadrature (cross

correlation of 0.68; Table 3 and Fig. S15), but we do not

have a definite labeling because the correlations are

lower than 0.5 (Table 5 and Fig. S9). The highest cor-

relations are 20.45 and 20.45 with SAOD tele-

connections (Table 5 and Fig. S16), and the spatial

pattern also suggests some connection with SAOD

movements in the Atlantic Ocean (Fig. S14). We find

that MSSA13–MSSA14 displays correlations with the

QBO index of 20.46 and 20.52 for MSSA13 and

MSSA14, respectively (Table 5 and Fig. S19), with a

cross-correlation peak of 0.54 (Table 3; see also

Fig. S18). According to Huang et al. (2012), strong SST-

anomaly patterns exist only in certain QBO phases, and

they found significant negative anomalies over the

eastern and central tropical Pacific in phase 3, moving

westward in phase 4, and warm temperature anomalies

over the western Pacific Ocean. This pattern can be

found in lags 10, 11, 12, and 13 of MSSA13, and less-

significant negative anomalies are also found in lags 6–

10 of MSSA14 (Fig. S17). There are other significant

anomalies in the tropical Atlantic and Indian Oceans

that may reflect the teleconnection of the tropical Pacific

with the Atlantic (Huang et al. 2012).

We found that the pair MSSA16 and MSSA17 has a

cross correlation that is close to the 0.6 threshold (0.59 in

Table 5 and Fig. S21), but the components do not display

strong correlations with any indices (Table 5; see the vi-

sualization in Fig. S22 of the online supplementary mate-

rial); all cross correlations are lower than 0.3. TheMSSA16

andMSSA17 spatial pattern is also inconclusive (Fig. S20).

The results suggest that the MSSA1–MSSA3 pair is in

quadrature and displays a strong relationship with the

ENSO event but with some mixing with other climate

modes. The lag analysis indicates that the MSSA1
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temporal profile correlates the most with Niño-3.4 (0.69)

but also displays strong correlation with three other cli-

mate indices: PDO (0.56), AMO (0.59), and TSA (20.57)

(Table 5). The MSSA1 spatial pattern exhibits a spatial

configuration that resembles themost anENSOevent, with

the entire map sequence exhibiting the pattern of warm-

ENSO-phase El Niño (Fig. S10). The MSSA1 spatial-

sequence map shows the strengthening of the El Niño
event from lag 0 through lag 12. Thus, evidence indicates

that MSSA1 is most strongly related to ENSO but also

FIG. 4. Temporal map sequences for (top)MEOT7 and (bottom)MEOT16 illustrate the development of theAMM. The peak of the event

occurs in MEOT7 around lag 6.
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exhibits strong correlations with two other teleconnections

(PDO and TSA), suggesting some mixing of modes.

MSSA3 displays the transition from the El Niño
conditions characterized by warm SST anomalies along

the coast of South America to a normal state with cold

waters along South America (Fig. S10). MSSA3 appears

to followMSSA1, and the two components overlap between

the first and last three window sequences (lags 11, 12, and

13 from MSSA1 overlap with lags 1, 2, and 3 of MSSA3).

MSSA3 correlates the most with the ENSO-related

index Niño-3.4 (0.57) and shows less mixing than

MSSA1 because all other cross correlations are less than

0.5, with TNAbeing the second-strongest correlation

(20.39) (Fig. S12). The lag cross-correlation analysis

suggests that MSSA1 andMSSA3 are in quadrature, with

the cross-correlation function displaying its strongest ab-

solute value at lag211 with a correlation of 0.53 (Table 4

and Fig. S11). This indicates that MSSA3 follows MSSA1

by 11months as visible from the plot of the loadingswhere

MSSA3 is shifted forward by 11 months in comparison

FIG. 5. (bottom) The cross-correlation function between MEOT7 and MEOT16 exhibits

a peak of 0.77 at lag 5 and illustrates that MEOT 16 leads MEOT7 by 5 months. (top) The

temporal profiles confirm that MEOT7 and MEOT16 have similar temporal patterns. The

dashed lines in the bottom graph represent the 95% confidence interval.
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with MSSA1 (Fig. S11). While the peak of cross correla-

tion falls below the 0.6 threshold and is less pronounced

than that found in MEOT quadratures, combined evi-

dence from the lag analyses and the map sequence in-

dicate that the pair relates to the ENSO event.

5. Discussion

In the following section, we emphasize and discuss

three important points with regard to the results of the

MEOT analysis and its properties in general: 1) the

FIG. 6. The temporal map sequences for theMEOT10–MEOT15 pair illustrate the development of the SAOD teleconnection characterized

by a gradual warming over the Gulf of Guinea and a cooling at the center of the tropical South Atlantic Gyre.
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meaning of quadratures, 2) the effect of lag-window

length (embedding dimension), and 3) the issue of how it

behaves in the presence of red noise.

a. Quadrature in the literature

In SSA, modes in quadrature correspond to pairs of

temporal basis functions with similar temporal patterns

shifted in time. The identification of moving modes may

be done by searching for quadratures corresponding to

cross-correlation functions that exhibit clear peaks. In

MSSA, outputs provide both a temporal pattern and a

sequence of maps. Two components are in quadrature if

they show similar patterns in the temporal dimension

and in the space dimension (Jolliffe 2002;Wang 2001). In

consequence, for a mode to be in quadrature, a pair of

map sequences with similar spatial patterns shifted in

time is also required. Thus, in MEOT analysis, compo-

nents are identified as quadratures if map patterns

FIG. 7. (top) The temporal profiles of the MEOT10–MEOT15 pair illustrate the similarity in

temporal patterns and show that MEOT10 (solid) precedes MEOT15 (dashed) by 6 months.

(bottom) The cross-correlation function between MEOT10 and MEOT15 displays a peak of

0.91 at lag 26.
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describe the evolution of a climate phenomenon in a

series of different phases but also shifted in space in the

map sequence. On the basis of this criterion, results

provided three clear patterns in quadrature that relate to

three known climate teleconnection indices (ENSO,

AMM, and SAOD).

b. The effect of lag windows on the MEOT

The literature reports that MSSA is influenced by the

length of the lag window (Ghil et al. 2002). Since the lag-

window length Lmay affect the results of the MEOT as

well, we tested on smaller artificial datasets the effect of

the change in the lag window L (embedding dimension)

on the detection of phase changes for a given periodic

phenomenon. The artificial-image time series dataset

was composed of individual images containing 81 pixels

in a 9 3 9 pattern. Each pixel contained a small in-

dependent random component (with a mean of 0 and a

standard deviation of 0.0004) and one of nine systematic

sinusoidal patterns of variation over time. The nine sys-

tematic patterns contained an identical sinusoidal pattern

with different phase shifts over nine steps (Fig. 8). These

were applied equally to groups of 3 3 3 pixels such that

the wave peaks exhibited a spatiotemporal ‘‘S’’ pattern in

the 3 3 3 blocks progressing from lower left to upper

right. Thus, the full spatiotemporal pattern had a periodP

of nine time steps. This sequencewas repeated 10 times to

yield a complete time series of 90 images.

Using this artificial dataset, we conducted MEOT

analyses using lag-window lengths of 5, 6, 7, 8, 9, and 18

and found the following:

1) For a lag window of length. 6 but# 9, the temporal

sinusoidal signal is captured in the first two compo-

nents that are in quadrature. The spatial pattern

shows the development of the phenomenon in two

components when the lag window is less than the

period of the phenomenon (Figs. 9 and 10).

2) For a lag window of length # 6, the temporal

sinusoidal pattern is captured in the first two com-

ponents but the original spatial pattern is split in the

first two components and cannot be reconstructed

from the MEOT spatial patterns (Figs. 9 and 10).

3) For lag-window length . 9, the spatial pattern is

repeated. For instance, with lag-window length of 18,

the pattern is shown twice (Figs. 9 and 11).

4) In all cases, the temporal sinusoidal pattern is re-

covered in the first two temporalMEOT components

(Fig. 9).

The artificial dataset suggests that the full spatial map

sequence can be recovered whenever the lag window of

length L is greater than or equal to 0.75 of the period, or

L 5 P 2 (P/4). For the artificial dataset, the period is 9

T
A
B
L
E
5
.
A
b
so
lu
te

e
x
tr
e
m
u
m

v
a
lu
e
fo
r
la
g
cr
o
ss
-c
o
rr
e
la
ti
o
n
fu
n
ct
io
n
s
b
e
tw

ee
n
cl
im

a
te

in
d
ic
e
s
a
n
d
M
S
S
A

m
o
d
e
s
(l
ag

in
p
a
re
n
th
e
se
s)
.

P
N
A

N
A
O

T
N
A

T
S
A

S
A
O
D

N
iñ
o
-3
.4

P
D
O

A
O

A
A
O

A
M
M

A
M
O

Q
B
O

M
S
S
A
1

0
.1
8
(1
1
)

0
.1
6
(2

2
)

2
0
.4
4
(2

3
)

2
0
.5
7
(0
)

2
0
.2
5
(3
)

0
.6
9
(6
)

0
.5
6
(1
0
)

0
.1
2
(2

4
)

2
0
.1
8
(4
)

2
0
.3
6
(3
)

2
0
.5
9
(2

1
)

0
.1
1
(5
)

M
S
S
A
2

2
0
.2

(7
)

0
.1
9
(6
)

2
0
.7
1
(6
)

2
0
.2
3
(8
)

0
.3
4
(2

2
)

2
0
.5
6
(1
)

2
0
.1
6
(3
)

0
.1
5
(6
)

0
.0
6
(1
)

2
0
.5
1
(1
0
)

2
0
.7
5
(8
)

0
.1
4
(2

1
0
)

M
S
S
A
3

0
.2

(2
)

0
.0
7
(1
3
)

2
0
.3
9
(1
3
)

2
0
.2
9
(2

9
)

0
.3

(1
3
)

2
0
.5
7
(1
3
)

0
.3
3
(0
)

2
0
.0
7
(3
)

0
.2

(1
1
)

2
0
.2
7
(0
)

2
0
.2
9
(2

1
3
)

0
.1
6
(2

3
)

M
S
S
A
4

0
.1
4
(1
2
)

2
0
.1
6
(2

1
3
)

0
.2
4
(2

1
3
)

0
.3
1
(2

1
0
)

0
.1
7
(2

8
)

2
0
.3
9
(2

3
)

2
0
.3

(2
1
)

2
0
.1
6
(2

1
3
)

0
.1
7
(0
)

0
.2
4
(2

1
3
)

0
.2
1
(2

1
3
)

0
.2
2
(7
)

M
S
S
A
7

2
0
.1

(2
5
)

2
0
.0
7
(2

5
)

2
0
.2
4
(0
)

2
0
.3
7
(1
1
)

2
0
.4
5
(1
1
)

2
0
.2
7
(2

6
)

2
0
.1
9
(2

6
)

0
.1
1
(1
3
)

2
0
.2
8
(4
)

0
.2
9
(1
0
)

2
0
.2
1
(0
)

2
0
.2
6
(6
)

M
S
S
A
8

0
.1
3
(1
)

2
0
.0
8
(3
)

2
0
.1
7
(2

7
)

0
.3
3
(1
3
)

2
0
.4
5
(5
)

0
.2
5
(1
3
)

0
.2
8
(6
)

2
0
.1
2
(2
)

2
0
.2
1
(2

1
)

0
.2
2
(4
)

2
0
.2

(2
7
)

2
0
.2
4
(2
)

M
S
S
A
1
3

2
0
.1
5
(2

6
)

0
.1
1
(2

6
)

2
0
.2
4
(2

9
)

0
.2
1
(9
)

0
.2
3
(9
)

2
0
.3

(2
1
3
)

2
0
.1
8
(2

9
)

0
.1
6
(2

5
)

2
0
.1
6
(1
0
)

0
.2
3
(1
)

2
0
.2
2
(2

9
)

2
0
.4
6
(2

1
2
)

M
S
S
A
1
4

0
.1
2
(2

1
3
)

0
.0
8
(2

2
)

0
.1
8
(6
)

0
.2
8
(1
3
)

0
.3
2
(1
3
)

2
0
.0
7
(2

7
)

0
.1

(2
1
3
)

2
0
.0
6
(5
)

2
0
.1
4
(1
3
)

0
.2
2
(6
)

2
0
.1
4
(2

4
)

2
0
.5
2
(2

6
)

M
S
S
A
1
7

0
.1
5
(2

7
)

0
.0
5
(2
)

2
0
.1
1
(1
3
)

2
0
.1
4
(2

1
2
)

2
0
.2
3
(0
)

0
.0
5
(2

1
3
)

0
.1
4
(0
)

0
.1
2
(3
)

0
.2
2
(1
)

2
0
.1
7
(1
3
)

2
0
.1
2
(1
2
)

0
.2
1
(2

1
2
)

M
S
S
A
1
8

2
0
.1
2
(2

9
)

2
0
.0
7
(2

1
)

2
0
.1
9
(2

1
3
)

2
0
.1
6
(2
)

0
.2
4
(2

1
0
)

0
.1

(2
9
)

2
0
.1

(0
)

2
0
.0
9
(8
)

2
0
.1
5
(2

4
)

2
0
.2
4
(2

1
3
)

2
0
.1
5
(2

1
3
)

2
0
.1
9
(2

6
)

JULY 2017 PARMENT I ER ET AL . 1911

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/29/22 05:29 PM UTC



and L must be greater than or equal to 6.75, that is, at

least 7. Furthermore, the lag window has an effect on the

length of the temporal MEOT component/index

extracted. For instance, if the lag window is 8, the length

of the total time series analyzed will be 902 81 15 83.

Thus, we found that, for a phenomenon to be fully de-

tected spatially (i.e., every spatial map sequence shown),

we must use a lag window of at least three-quarters of

the period of the cycle.

For the global analysis of SST, we chose a window of

13 months. Thus, in the context of our analysis, this

choice implies that we should have been able to uncover

events with periods of 17.3 months or greater. The re-

sults indicated that the three phenomena uncovered

FIG. 8. Synthetic dataset composed of (a) 81 pixels and nine subpatterns, with (b) the associated times series of

sinusoidal signal out of phase.
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(ENSO, AMM, and SAOD) show event periods (as

opposed to repeat periods) of 24, 20, and 24months (i.e.,

quadrature lags of 6, 5, and 6 months) respectively.

c. The behavior of MEOT in the presence of red noise

The climate literature also raises the issue of red noise

when decomposing datasets. To identify tele-

connections, we used 12 published indices from NOAA

and the literature (Table 1). Most of these indices ex-

hibit high autoregressive lag-1 (AR1) correlations, and

entire papers are devoted to the problem of dis-

tinguishing components in the presence of red noise

(Allen and Robertson 1996; Feldstein 2000; Meinke

et al. 2005; Rodionov 2006). To explore empirically how

the MEOT algorithm performs in the presence of red

noise, we created two small artificial datasets that con-

tain temporal red noise with and without spatial struc-

tures. Red noise was added by using a first-lag

autoregressive model with AR1 of 0.92, which corre-

sponds to the AR1 coefficient of the ENSO Niño-3.4

index. For the white-noise component of the AR1

model, we used a mean of 0 and a standard deviation of

1. Using this red-noise base dataset, we generated an

additional dataset by adding a spatial trend at every time

step. All datasets contain 9 pixels (3 3 3 raster images)

with times series of length 45 (Figs. 12a,b).

We found that high temporal cross correlation can oc-

cur for MEOT components extracted, but the spatial

patterns are not similar (Fig. 12). The spatial patterns of

MEOT components did not portray a sequence ofmoving

patterns. We also found that patterns were noisy and did

not display coherent spatial structure. Furthermore, in the

case of the red-noise dataset with spatial trend, we were

unable to recover the original spatial structure (i.e., the

spatial trend added) in the MEOT map sequences. We

found that occasional high cross correlation may occur

among temporal base patterns by chance. In instances in

which that occurred, however, they failed to exhibit

phase-shifted similarities in their spatial patterns

(Figs. 12c,d). In contrast, in the context of the global SST

FIG. 9. Temporal patterns forMEOT1 (solid) andMEOT2 (dashed) for lag windows of length 5–9 and 18: In all cases, the temporal pattern

is recovered by the first two MEOT temporal profiles.
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analysis, we found clear similarity in the spatial patterns in

the quadrature pairs as well as development of the phe-

nomena over time. In summary, components uncovered

with MEOT from series that possess patterns solely as a

result of red noise fail to produce pairs on components

that are in quadrature in both space and time.

Note also that, like EOT, MEOT is a brute-force re-

gression technique that is very computationally intensive.

Before it can be effectively used as a mainstream

technique in climatological research, effective software

implementations will need to be developed that canmake

best use of parallel-processing techniques and high-

performance computer clusters or cloud computing.

6. Conclusions

This research introduced multichannel empirical or-

thogonal teleconnection analysis as an extension of the

FIG. 10. Spatial patterns for (left) MEOT1 and (right) MEOT2 for lag windows of length (a) 5, (b) 6, and (c) 7. In (a) and (b) the spatial

pattern is split between twoMEOTs when using a lag window of 5 or 6 but cannot be reconstructed with two components; in (c) with a lag

window of 7, the spatial pattern is split between the two components and can be reconstructed.
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empirical orthogonal teleconnection analysis to extract

climate modes of variability coevolving in time and

space. Extraction and identification of such climate

modes are critical to improve our understanding of the

Earth system and provide predictions to inform on the

potential direct or indirect impacts of these phenomena

on society (e.g., drought, fire, and flooding). Using a

global SST dataset, we explore similarities and differ-

ences between MEOT and MSSA in the extraction of

quadratures and their interpretation. Results show that

the MEOT method was able to extract several climate

modes coevolving in space and time.We identified three

modes in quadratures, in both space and time, related to

the ENSO, AMM, and SAOD teleconnections with

event periods (as opposed to repeat cycles) of 24, 20, and

24 months, respectively. Findings indicate that both

MSSA and MEOT analyses were able to extract several

climate modes coevolving in space and time, but results

differed in both the number and the clarity of the pat-

terns. For the MEOTs we obtained three modes in

quadratures related to the ENSO, SAOD, and AMM

teleconnections, whereas for the MSSA four quadra-

tures were extracted from which we related two to the

ENSO and QBO teleconnections. MSSA modes and

quadratures display mixing of climate modes of vari-

ability, with the two remaining quadratures (MSSA7–

MSSA8 and MSSA16–MSSA17) being difficult to

identify. For instance, while there is strong evidence that

the MSSA1–MSSA3 quadrature relates to the ENSO

event, MSSA1 also exhibits strong correlation with

FIG. 11. Spatial patterns for (left)MEOT1 and (right)MEOT2 for a lag windows of length (a) 8, (b) 9, and (c) 18. In (a) with lag window

8, eight phases of nine are represented in each component, and both can be used to reconstruct the full pattern; In (b), all of the phases are

represented in MEOTs with lag window 9; In (c) with lag window 18, the nine phases of the spatial patterns are fully represented in each

component but the original cycle is repeated.
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FIG. 12. (a) Synthetic datasets for red noise with the first nine spatial patterns and spatial trend. (b) The dataset comprises time series for

nine pixels and shows that the spatial coherence is quickly lost in the presence of red noise. (c), (d) It is seen that the original signal is not

recovered when MEOT analysis is carried out with a lag window of length 9.

1916 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/29/22 05:29 PM UTC



PDO, AMO, and TSA modes. Such mixed patterns

render the identification of individual teleconnection

arduous and decrease their usefulness in climate pre-

diction (Kim and Wu 1999; van den Dool 2007). In

contrast, MEOT modes display less mixing of modes,

and, when they do, their spatial patterns clearly elimi-

nate any confusion. For instance, the MEOT10–

MEOT5 and MEOT7–MEOT16 pairs display strong

correlations with the TNA and TSA indices, re-

spectively, but the spatial patterns in the sequence of

maps unambiguously relate them to the AMM and the

SAOD modes, respectively.

Findings indicate that MEOT analysis is able to ex-

tract pairs of modes that correspond to phenomena

coevolving in space and time. Results also indicate that

the new MEOT method differs from MSSA in extract-

ing oscillatory patterns in both the number of quadra-

tures and relation to known indices. MSSA extracted

more quadratures but displayed more mixing. Given

MEOT’s special quality that it relaxes the bio-

rthogonality constraint that is associated with tech-

niques such as MSSA, these results suggest that further

research is warranted to assess its competitive strengths

relative to alternative solutions such as rotated MSSA.
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